HEp-2 Cell Classification via Fusing Texture and Shape Information

نویسندگان

  • Xianbiao Qi
  • Guoying Zhao
  • Chun-Guang Li
  • Jun Guo
  • Matti Pietikäinen
چکیده

Indirect Immunofluorescence (IIF) HEp-2 cell image is an effective evidence for diagnosis of autoimmune diseases. Recently computer-aided diagnosis of autoimmune diseases by IIF HEp-2 cell classification has attracted great attention. However the HEp-2 cell classification task is quite challenging due to large intra-class variation and small between-class variation. In this paper we propose an effective and efficient approach for the automatic classification of IIF HEp-2 cell image by fusing multiresolution texture information and richer shape information. To be specific, we propose to: a) capture the multi-resolution texture information by a novel Pairwise Rotation Invariant Co-occurrence of Local Gabor Binary Pattern (PRICoLGBP) descriptor, b) depict the richer shape information by using an Improved Fisher Vector (IFV) model with RootSIFT features which are sampled from large image patches in multiple scales, and c) combine them properly. We evaluate systematically the proposed approach on the IEEE International Conference on Pattern Recognition (ICPR) 2012, IEEE International Conference on Image Processing (ICIP) 2013 and ICPR 2014 contest data sets. The experimental results for the proposed methods significantly outperform the winners of ICPR 2012 and ICIP 2013 contest, and achieve comparable performance with the winner of the newly released ICPR 2014 contest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image

Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...

متن کامل

New image descriptors based on color, texture, shape, and wavelets for object and scene image classification

This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...

متن کامل

Gender Classification from Face Images Using Mutual Information and Feature Fusion

In this article we report a new method for gender classification from frontal face images using feature selection based on mutual information and fusion of features extracted from intensity, shape, texture, and from three different spatial scales. We compare the results of three different mutual information measures: minimum redundancy and maximal relevance (mRMR), normalized mutual information...

متن کامل

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

HEp-2 Cell Image Classification: A Comparative Analysis

HEp-2 cell image classification is an important and relatively unexplored area of research. This paper presents an experimental analysis of five different categories of feature sets with four different classifiers to determine the best performing combination of features and classifiers. The analysis is performed on the ICIP 2013 Cell Classification Contest Training dataset comprising over 13, 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1502.04658  شماره 

صفحات  -

تاریخ انتشار 2015